arrow_upward arrow_upward

Publications

  /  Publications

2020

[1] Forestier E, Combeaud C, Guigo N, Monge G, Haudin J-M, Sbirrazzuoli N, et al. Strain-induced
crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysis.
Polymer. 2020;187:122126.
[2] Forestier E, Combeaud C, Guigo N, Sbirrazzuoli N, Billon N. Understanding of strain-induced
crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and
poly(ethylene terephthalate), PET. Polymer. 2020;203:122755.
[3] Forestier E, Guigo N, Combeaud C, Billon N, Sbirrazzuoli N. Conformational Change Analysis of
Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene terephthalate) under Uniaxial Stretching.
Macromolecules. 2020;53:8693-703.
[4] Fredi G, Dorigato A, Bortolotti M, Pegoretti A, Bikiaris DN. Mechanical and Functional Properties of
Novel Biobased Poly(decylene-2,5-furanoate)/Carbon Nanotubes Nanocomposite Films. Polymers.
2020;12:2459.
[5] Guidotti G, Soccio M, García-Gutiérrez MC, Ezquerra T, Siracusa V, Gutiérrez-Fernández E, et al. Fully
Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid
to Flexible, High Performant Packaging Materials. ACS Sustainable Chemistry & Engineering.
2020;8:9558-68.
[6] Klonos PA, Papadopoulos L, Papageorgiou GZ, Kyritsis A, Pissis P, Bikiaris DN. Interfacial Interactions,
Crystallization, and Molecular Dynamics of Renewable Poly(Propylene Furanoate) In Situ Filled with
Initial and Surface Functionalized Carbon Nanotubes and Graphene Oxide. The Journal of Physical
Chemistry C. 2020;124:10220-34.
[7] Klonos PA, Papadopoulos L, Terzopoulou Z, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Molecular
Dynamics in Nanocomposites Based on Renewable Poly(butylene 2,5-furan-dicarboxylate) In Situ
Reinforced by Montmorillonite Nanoclays: Effects of Clay Modification, Crystallization, and Hydration.
The Journal of Physical Chemistry B. 2020;124:7306-17.
[8] Kluge M, Papadopoulos L, Magaziotis A, Tzetzis D, Zamboulis A, Bikiaris DN, et al. A Facile Method to
Synthesize Semicrystalline Poly(ester amide)s from 2,5-Furandicarboxylic Acid, 1,10-Decanediol, and
Crystallizable Amido Diols. ACS Sustainable Chemistry & Engineering. 2020;8:10812-21.
[9] Kwiatkowska M, Kowalczyk I, Kwiatkowski K, Zubkiewicz A. Microstructure and Mechanical/Elastic
Performance of Biobased Poly (Butylene Furanoate)–Block–Poly (Ethylene Oxide) Copolymers: Effect of
the Flexible Segment Length. Polymers (Basel). 2020;12:271.
[10] Loos K, Zhang R, Pereira I, Agostinho B, Hu H, Maniar D, et al. A Perspective on PEF Synthesis,
Properties, and End-Life. Frontiers in Chemistry. 2020;8.
[11] Maniar D, Silvianti F, Ospina VM, Woortman AJJ, van Dijken J, Loos K. On the way to greener
furanic-aliphatic poly(ester amide)s: Enzymatic polymerization in ionic liquid. Polymer.
2020;205:122662.

[12] Martínez-Tong DE, Soccio M, Robles-Hernández B, Guidotti G, Gazzano M, Lotti N, et al. Evidence of
Nanostructure Development from the Molecular Dynamics of Poly(pentamethylene 2,5-furanoate).
Macromolecules. 2020;53:10526-37.
[13] Papadopoulos L, Terzopoulou Z, Vlachopoulos A, Klonos PA, Kyritsis A, Tzetzis D, et al. Synthesis and
characterization of novel polymer/clay nanocomposites based on poly (butylene 2,5-furan
dicarboxylate). Applied Clay Science. 2020;190:105588.
[14] Papadopoulos L, Xanthopoulou E, Nikolaidis GN, Zamboulis A, Achilias DS, Papageorgiou GZ, et al.
Towards High Molecular Weight Furan-Based Polyesters: Solid State Polymerization Study of Bio-Based
Poly(Propylene Furanoate) and Poly(Butylene Furanoate). Materials. 2020;13:4880.
[15] Robles-Hernández B, Soccio M, Castrillo I, Guidotti G, Lotti N, Alegría Á, et al. Poly(alkylene 2,5-
furanoate)s thin films: Morphology, crystallinity and nanomechanical properties. Polymer.
2020;204:122825.
[16] Sanusi OM, Papadopoulos L, Klonos PA, Terzopoulou Z, Hocine NA, Benelfellah A, et al. Calorimetric
and Dielectric Study of Renewable Poly(hexylene 2,5-furan-dicarboxylate)-Based Nanocomposites In Situ
Filled with Small Amounts of Graphene Platelets and Silica Nanoparticles. Polymers. 2020;12:1239.
[17] Skoczinski P, Espinoza Cangahuala MK, Maniar D, Albach RW, Bittner N, Loos K. Biocatalytic
Synthesis of Furan-Based Oligomer Diols with Enhanced End-Group Fidelity. ACS Sustainable Chemistry
& Engineering. 2020;8:1068-86.
[18] Soccio M, Martínez-Tong DE, Guidotti G, Robles-Hernández B, Munari A, Lotti N, et al. Broadband
Dielectric Spectroscopy Study of Biobased Poly(alkylene 2,5-furanoate)s’ Molecular Dynamics. Polymers.
2020;12:1355.
[19] Terzopoulou Z, Papadopoulos L, Zamboulis A, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN.
Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review.
Polymers. 2020;12:1209.
[20] Terzopoulou Z, Wahbi M, Kasmi N, Papageorgiou GZ, Bikiaris DN. Effect of additives on the thermal
and thermo-oxidative stability of poly(ethylene furanoate) biobased polyester. Thermochimica Acta.
2020;686:178549.

2021

[21] Aricò F. Synthetic approaches to 2,5-bis(hydroxymethyl)furan (BHMF): a stable bio-based diol. Pure
and Applied Chemistry. 2021;93:551-60.
[22] Bianchi E, Soccio M, Siracusa V, Gazzano M, Thiyagarajan S, Lotti N. Poly(butylene 2,4-furanoate), an
Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural
Isomerism as a Key to Tune the Final Properties. ACS Sustainable Chemistry & Engineering.
2021;9:11937-49.
[23] Forestier E, Combeaud C, Guigo N, Corvec G, Pradille C, Sbirrazzuoli N, et al. Comparative Analysis of
the Mechanical Behaviour of PEF and PET Uniaxial Stretching Based on the Time/Temperature
Superposition Principle. Polymers (Basel). 2021;13:3295.

[24] Fredi G, Karimi Jafari M, Dorigato A, Bikiaris DN, Checchetto R, Favaro M, et al. Multifunctionality of
Reduced Graphene Oxide in Bioderived Polylactide/Poly(Dodecylene Furanoate) Nanocomposite Films.
Molecules. 2021;26:2938.
[25] Fredi G, Rigotti D, Bikiaris DN, Dorigato A. Tuning thermo-mechanical properties of poly(lactic acid)
films through blending with bioderived poly(alkylene furanoate)s with different alkyl chain length for
sustainable packaging. Polymer. 2021;218:123527.
[26] Giannakoudakis DA, Colmenares JC, Tsiplakides D, Triantafyllidis KS. Nanoengineered Electrodes for
Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS
Sustainable Chemistry & Engineering. 2021;9:1970-93.
[27] Guigo N, Jérome F, Sousa AF. Biobased furanic derivatives for sustainable development. Green
Chemistry. 2021;23:9721-2.
[28] Papadopoulos L, Klonos PA, Kluge M, Zamboulis A, Terzopoulou Z, Kourtidou D, et al. Unlocking the
potential of furan-based poly(ester amide)s: an investigation of crystallization, molecular dynamics and
degradation kinetics of novel poly(ester amide)s based on renewable poly(propylene furanoate).
Polymer Chemistry. 2021;12:5518-34.
[29] Papadopoulos L, Zamboulis A, Kasmi N, Wahbi M, Nannou C, Lambropoulou DA, et al. Investigation
of the catalytic activity and reaction kinetic modeling of two antimony catalysts in the synthesis of
poly(ethylene furanoate). Green Chemistry. 2021;23:2507-24.
[30] Papageorgiou DG, Tsetsou I, Ioannidis RO, Nikolaidis GN, Exarhopoulos S, Kasmi N, et al. A New Era
in Engineering Plastics: Compatibility and Perspectives of Sustainable Alipharomatic Poly(ethylene
terephthalate)/Poly(ethylene 2,5-furandicarboxylate) Blends. Polymers. 2021;13:1070.
[31] Paszkiewicz S, Irska I, Walkowiak K, Zubkiewicz A. Influence of synthesis conditions on molecular
weight as well as mechanical and thermal properties of poly(hexamethylene 2,5-furanate). Polimery.
2021;66:527-31.
[32] Paszkiewicz S, Irska I, Zubkiewicz A, Szymczyk A, Piesowicz E, Rozwadowski Z, et al. Biobased
Thermoplastic Elastomers: Structure-Property Relationship of Poly(hexamethylene 2,5-
furanodicarboxylate)-Block-Poly(tetrahydrofuran) Copolymers Prepared by Melt Polycondensation.
Polymers (Basel). 2021;13:397.
[33] Perin D, Rigotti D, Fredi G, Papageorgiou GZ, Bikiaris DN, Dorigato A. Innovative Bio-based
Poly(Lactic Acid)/Poly(Alkylene Furanoate)s Fiber Blends for Sustainable Textile Applications. Journal of
Polymers and the Environment. 2021;29:3948-63.
[34] Poulopoulou N, Guigo N, Sbirrazzuoli N, Papageorgiou DG, Bikiaris DN, Nikolaidis GN, et al. Towards
increased sustainability for aromatic polyesters: Poly(butylene 2,5-furandicarboxylate) and its blends
with poly(butylene terephthalate). Polymer. 2021;212:123157.
[35] Rezić T, Vrsalović Presečki A, Kurtanjek Ž. New approach to the evaluation of lignocellulose derived
by-products impact on lytic-polysaccharide monooxygenase activity by using molecular descriptor
structural causality model. Bioresource Technology. 2021;342:125990.

[36] Ruiz AC, Damodaran KK, Suman SG. Towards a selective synthetic route for cobalt amino acid
complexes and their application in ring opening polymerization of rac-lactide. RSC Advances.
2021;11:16326-38.
[37] Sousa AF, Patrício R, Terzopoulou Z, Bikiaris DN, Stern T, Wenger J, et al. Recommendations for
replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry.
2021;23:8795-820.
[38] Takarada W, Sugimoto K, Nakajima H, Visser HA, Gruter G-JM, Kikutani T. Melt-Spun Fibers from
Bio-Based Polyester–Fiber Structure Development in High-Speed Melt Spinning of Poly(ethylene 2,5-
furandicarboxylate) (PEF). Materials. 2021;14:1172.
[39] Tellers J, Sbirrazzuoli N, Guigo N. A rigid plant oil-based thermoset with a furfural-derived
cyclobutane cross-linker. Green Chemistry. 2021;23:8053-60.
[40] Xanthopoulou E, Klonos PA, Zamboulis A, Terzopoulou Z, Kyritsis A, Pissis P, et al. Molecular mobility
investigation of the biobased Poly(ethylene vanillate) and Poly(propylene vanillate). Polymer.
2021;233:124197.
[41] Xanthopoulou E, Terzopoulou Z, Zamboulis A, Papadopoulos L, Tsongas K, Tzetzis D, et al.
Poly(propylene vanillate): A Sustainable Lignin-Based Semicrystalline Engineering Polyester. ACS
Sustainable Chemistry & Engineering. 2021;9:1383-97.
[42] Xanthopoulou E, Zamboulis A, Terzopoulou Z, Kostoglou M, Bikiaris DN, Papageorgiou GZ.
Effectiveness of Esterification Catalysts in the Synthesis of Poly(Ethylene Vanillate). Catalysts.
2021;11:822.
[43] Zaidi S, Soares MJ, Bougarech A, Thiyagarajan S, Guigo N, Abid S, et al. Unravelling the para- and
ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic
polyesters bearing 2,5-furandicarboxylic moieties. European Polymer Journal. 2021;150:110413.
[44] Zubkiewicz A, Irska I, Miadlicki P, Walkowiak K, Rozwadowski Z, Paszkiewicz S. Structure, thermal
and mechanical properties of copoly(ester amide)s based on 2,5‐furandicarboxylic acid. Journal of
Materials Science. 2021;56:19296-309.
[45] Zubkiewicz A, Paszkiewicz S, Szymczyk A. The effect of annealing on tensile properties of injection
molded biopolyesters based on 2,5-furandicarboxylic acid. Polymer Engineering & Science.
2021;61:1536-45.

2022

[46] Agostinho B, Silvestre AJD, Sousa AF. From PEF to rPEF: disclosing the potential of deep eutectic
solvents in continuous de-/re-polymerization recycling of biobased polyesters. Green Chemistry.
2022;24:3115-9.
[47] Annatelli M, Trapasso G, Torre DD, Pietrobon L, Redolfi-Bristol D, Aricò F. A Green Synthesis of 5,5′-
[Oxybis(methylene)]bis-2-Furfural: from By-Product to Attractive Bio-Based Platform Chemical.
Advanced Sustainable Systems. 2022;6:2200297.

[48] Balla ED, Papadopoulos L, Ainali NM, Kourtidou D, Grigora M-E, Tzetzis D, et al. Poly(ethylene
furanoate-co-ethylene vanillate) biobased copolymers: Impact of the incorporation of vanillic acid units
in poly(ethylene furanoate). European Polymer Journal. 2022;176:111429.
[49] Bouyahya C, Patrício R, Paço A, Lima MS, Fonseca AC, Rocha-Santos T, et al. Isosorbide and 2,5-
Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental
Degradation. Polymers. 2022;14:3868.
[50] Demet AE, Gimello O, Arletti R, Tanchoux N, Sougrati MT, Stievano L, et al. 5-Hydroxymethylfurfural
Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts.
Catalysts. 2022;12:814.
[51] Fabris C, Perin D, Fredi G, Rigotti D, Bortolotti M, Pegoretti A, et al. Improving the Wet-Spinning and
Drawing Processes of Poly(lactide)/Poly(ethylene furanoate) and Polylactide/Poly(dodecamethylene
furanoate) Fiber Blends. Polymers. 2022;14:2910.
[52] Ferreira AM, Sucena I, Otero V, Angelin EM, Melo MJ, Coutinho JAP. Pretreatment of Plastic Waste:
Removal of Colorants from HDPE Using Biosolvents. Molecules. 2022;27:98.
[53] Fosse C, Esposito A, Thiyagarajan S, Soccio M, Lotti N, Dargent E, et al. Cooperativity and fragility in
furan-based polyesters with different glycolic subunits as compared to their terephthalic counterparts.
Journal of Non-Crystalline Solids. 2022;597:121907.
[54] Fredi G, Dorigato A, Bikiaris DN, Checchetto R, Pegoretti A. Furanoate
Polyesters/Polylactide/Reduced Graphene Oxide Nanocomposite Films: Thermomechanical and Gas
Permeation Properties. Macromolecular Symposia. 2022;405:2100208.
[55] Fredi G, Dorigato A, Dussin A, Xanthopoulou E, Bikiaris DN, Botta L, et al. Compatibilization of
Polylactide/Poly(ethylene 2,5-furanoate) (PLA/PEF) Blends for Sustainable and Bioderived Packaging.
Molecules. 2022;27:6371.
[56] Fredi G, Karimi Jafari M, Dorigato A, Bikiaris DN, Pegoretti A. Improving the Thermomechanical
Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-
furandicarboxylate). Materials. 2022;15:1316.
[57] Giannakoudakis DA, Zormpa FF, Margellou AG, Qayyum A, Colmenares-Quintero RF, Len C, et al.
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation.
Nanomaterials. 2022;12:1679.
[58] Haas V, Wenger J, Ranacher L, Guigo N, Sousa AF, Stern T. Developing future visions for bio-plastics
substituting PET – A backcasting approach. Sustainable Production and Consumption. 2022;31:370-83.
[59] Harter T, Steiner H, Bračič M, Kargl R, Hirn U. Deteriorating dispersibility of flushable wet wipes
during storage: Role of fibre swelling and ionic shielding. Journal of Industrial Textiles.
2022;52:15280837221139236.
[60] Ivušić F, Rezić T, Šantek B. Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A
Promising Bioprocess for Sustainable Paramylon Production. Molecules. 2022;27:5866.

[61] Kasmi N, Terzopoulou Z, Chebbi Y, Dieden R, Habibi Y, Bikiaris DN. Tuning thermal properties and
biodegradability of poly(isosorbide azelate) by compositional control through copolymerization with 2,5-
furandicarboxylic acid. Polymer Degradation and Stability. 2022;195:109804.
[62] Katan T, Kargl R, Mohan T, Steindorfer T, Mozetič M, Kovač J, et al. Solid Phase Peptide Synthesis on
Chitosan Thin Films. Biomacromolecules. 2022;23:731-42.
[63] Klokic S, Naumenko D, Marmiroli B, Carraro F, Linares-Moreau M, Zilio SD, et al. Unraveling the
timescale of the structural photo-response within oriented metal–organic framework films. Chemical
Science. 2022;13:11869-77.
[64] Lackner F, Liu H, Štiglic AD, Bračič M, Kargl R, Nidetzky B, et al. 3D Printed Porous Nanocellulose-
Based Scaffolds As Carriers for Immobilization of Glycosyltransferases. ACS Applied Bio Materials.
2022;5:5728-40.
[65] Liu H, Štiglic AD, Mohan T, Kargl R, Kleinschek KS, Nidetzky B. Nano-fibrillated cellulose-based
scaffolds for enzyme (co)-immobilization: Application to natural product glycosylation by Leloir
glycosyltransferases. International Journal of Biological Macromolecules. 2022;222:217-27.
[66] Mohan T, Ajdnik U, Nagaraj C, Lackner F, Dobaj Štiglic A, Palani T, et al. One-Step Fabrication of
Hollow Spherical Cellulose Beads: Application in pH-Responsive Therapeutic Delivery. ACS Applied
Materials & Interfaces. 2022;14:3726-39.
[67] Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and
applications. Carbohydrate Polymers. 2022;280:118875.
[68] Papageorgiou GZ, Nikolaidis GN, Ioannidis RO, Rinis K, Papageorgiou DG, Klonos PA, et al. A Step
Forward in Thermoplastic Polyesters: Understanding the Crystallization and Melting of Biobased
Poly(ethylene 2,5-furandicarboxylate) (PEF). ACS Sustainable Chemistry & Engineering. 2022;10:7050-64.
[69] Perin D, Fredi G, Rigotti D, Soccio M, Lotti N, Dorigato A. Sustainable textile fibers of bioderived
polylactide/poly(pentamethylene 2,5-furanoate) blends. Journal of Applied Polymer Science.
2022;139:51740.
[70] Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N. Bio-based and one-day compostable
poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom
insertion on the final properties. Chemosphere. 2022;291:132996.
[71] Rezić I, Kracher D, Oros D, Mujadžić S, Anđelini M, Kurtanjek Ž, et al. Application of Causality
Modelling for Prediction of Molecular Properties for Textile Dyes Degradation by LPMO. Molecules.
2022;27:6390.
[72] Righetti MC, Vannini M, Celli A, Cangialosi D, Marega C. Bio-based semi-crystalline PEF:
Temperature dependence of the constrained amorphous interphase and amorphous chain mobility in
relation to crystallization. Polymer. 2022;247:124771.
[73] Rigotti D, Fredi G, Perin D, Bikiaris DN, Pegoretti A, Dorigato A. Statistical Modeling and
Optimization of the Drawing Process of Bioderived Polylactide/Poly(dodecylene furanoate) Wet-Spun
Fibers. Polymers. 2022;14:396.

[74] Sanz A, Linares A, García-Gutiérrez MC, Nogales A, Paszkiewicz S, Zubkiewicz A, et al. Relaxation
Dynamics of Biomass-Derived Copolymers With Promising Gas-Barrier Properties. Frontiers in Chemistry.
2022;10.
[75] Sousa AF, Silvestre AJD. Plastics from renewable sources as green and sustainable alternatives.
Current Opinion in Green and Sustainable Chemistry. 2022;33:100557.
[76] Terzopoulou Z, Xanthopoulou E, Pardalis N, Pappa CP, Torofias S, Triantafyllidis KS, et al. Synthesis
and Characterization of Poly(lactic acid) Composites with Organosolv Lignin. Molecules. 2022;27:8143.
[77] Terzopoulou Z, Zamboulis A, Papadopoulos L, Grigora M-E, Tsongas K, Tzetzis D, et al. Blending PLA
with Polyesters Based on 2,5-Furan Dicarboxylic Acid: Evaluation of Physicochemical and
Nanomechanical Properties. Polymers. 2022;14:4725.
[78] Trapasso G, Annatelli M, Dalla Torre D, Aricò F. Synthesis of 2,5-furandicarboxylic acid dimethyl
ester from galactaric acid via dimethyl carbonate chemistry. Green Chemistry. 2022;24:2766-71.
[79] Trapasso G, Mazzi G, Chícharo B, Annatelli M, Dalla Torre D, Aricò F. Multigram Synthesis of Pure
HMF and BHMF. Organic Process Research & Development. 2022;26:2830-8.
[80] Walkowiak K, Irska I, Paszkiewicz S. Synthesis and characterization of poly(hexamethylene 2,6-
naphthalate)-block-poly(tetrahydrofuran) copolymers with shape memory effect. Materials Research
Bulletin. 2022;155:111954.
[81] Walkowiak K, Irska I, Zubkiewicz A, Dryzek J, Paszkiewicz S. The Properties of Poly(ester amide)s
Based on Dimethyl 2,5-Furanedicarboxylate as a Function of Methylene Sequence Length in Polymer
Backbone. Polymers (Basel). 2022;14:2295.
[82] Wu X, Galkin MV, Stern T, Sun Z, Barta K. Fully lignocellulose-based PET analogues for the circular
economy. Nature Communications. 2022;13:3376.
[83] Xanthopoulou E, Zamboulis A, Terzopoulou Z, Bikiaris DN, Kourtidou D, Tarani E, et al. Towards
novel lignin-based aromatic polyesters: In-depth study of the thermal degradation and crystallization of
poly(propylene vanillate). Thermochimica Acta. 2022;709:179145.
[84] Zubkiewicz A, Szymczyk A, Sablong RJ, Soccio M, Guidotti G, Siracusa V, et al. Bio-based
aliphatic/aromatic poly(trimethylene furanoate/sebacate) random copolymers: Correlation between
mechanical, gas barrier performances and compostability and copolymer composition. Polymer
Degradation and Stability. 2022;195:109800.

2023

[85] Agostinho B, Silvestre AJD, Coutinho JAP, Sousa AF. Synthetic (bio)degradable polymers – when
does recycling fail? Green Chemistry. 2023;25:13-31.
[86] Bianchi E, Guidotti G, Soccio M, Siracusa V, Gazzano M, Salatelli E, et al. Biobased and Compostable
Multiblock Copolymer of Poly(l-lactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food
Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism.
Biomacromolecules. 2023;24:2356-68.

[87] Dobaj Štiglic A, Lackner F, Nagaraj C, Beaumont M, Bračič M, Duarte I, et al. 3D-Printed
Collagen–Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications.
ACS Applied Bio Materials. 2023;6:5596-608.
[88] Gálvez O, Toledano O, Hermoso FJ, Linares A, Sanz M, Rebollar E, et al. Inter and intra molecular
dynamics in poly(trimethylene 2,5-furanoate) as revealed by infrared and Broadband Dielectric
Spectroscopies. Polymer. 2023;268:125699.
[89] Guidotti G, Soccio M, Gazzano M, Siracusa V, Lotti N. New Random Aromatic/Aliphatic Copolymers
of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas
Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules. 2023;28:4056.
[90] Jurko L, Makuc D, Štern A, Plavec J, Žegura B, Bošković P, et al. Cytotoxicity and Antibacterial
Efficacy of Betaine- and Choline-Substituted Polymers. ACS Applied Polymer Materials. 2023;5:5270-9.
[91] Kammoun M, Margellou A, Toteva VB, Aladjadjiyan A, Sousa AF, Luis SV, et al. The key role of
pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into
furan compounds. RSC Advances. 2023;13:21587-612.
[92] Kwiatkowska M, Kowalczyk I, Rozwadowski Z, Piesowicz E, Szymczyk A. Hytrel-like Copolymers
Based on Furan Polyester: The Effect of Poly(Butylene Furanoate) Segment on Microstructure and
Mechanical/Elastic Performance. Molecules. 2023;28:2962.
[93] Lackner F, Knechtl I, Novak M, Nagaraj C, Dobaj Štiglic A, Kargl R, et al. 3D-Printed Anisotropic
Nanofiber Composites with Gradual Mechanical Properties. Advanced Materials Technologies.
2023;8:2201708.
[94] Palasingh C, Kargl R, Stana Kleinschek K, Schaubeder J, Spirk S, Ström A, et al. Morphology and
swelling of thin films of dialcohol xylan. Carbohydrate Polymers. 2023;313:120810.
[95] Papadopoulos L, Malitowski NM, Bikiaris D, Robert T. Bio-based additive manufacturing materials:
An in-depth structure-property relationship study of UV-curing polyesters from itaconic acid. European
Polymer Journal. 2023;186:111872.
[96] Papadopoulos L, Malitowski NM, Zamboulis A, Friebel S, Bikiaris D, Robert T. Influence of bio-based
2,5-furandicarboxylic acid on the properties of water-borne polyurethane dispersions. Reactive and
Functional Polymers. 2023;190:105622.
[97] Papadopoulos L, Pezzana L, Malitowski NM, Sangermano M, Bikiaris DN, Robert T. UV-Curing
Additive Manufacturing of Bio-Based Thermosets: Effect of Diluent Concentration on Printing and
Material Properties of Itaconic Acid-Based Materials. ACS Omega. 2023;8:31009-20.
[98] Paszkiewicz S, Irska I, Zubkiewicz A, Walkowiak K, Rozwadowski Z, Dryzek J, et al. Supramolecular
structure, relaxation behavior and free volume of bio-based poly(butylene 2,5-furandicarboxylate)-
block-poly(caprolactone) copolyesters. Soft Matter. 2023;19:959-72.
[99] Paszkiewicz S, Walkowiak K, Irska I, Mechowska S, Stankiewicz K, Zubkiewicz A, et al. Influence of
the Multiple Injection Moulding and Composting Time on the Properties of Selected Packaging and
Furan-Based Polyesters. Journal of Polymers and the Environment. 2023;31:722-42.

[100] Paszkiewicz S, Walkowiak K, Irska I, Zubkiewicz A, Figiel P, Gorący K, et al. Furan-based
copoly(ester-ethers) and copoly(ester-amide-ethers). Comparison study on the phase structure,
mechanical and thermal properties. Polymer. 2023;269:125740.
[101] Rihab K, Bougarech A, Zaidi S, Althobaiti IO, Abid M, Silvestre AJD, et al. Biobased Semi-Crystalline
Polyesteramides from 2,5-Furandicarboxylic Acid and 5,5′-Isopropylidene Bis(2-furfurylamine): Synthesis
toward Crystallinity and Chemical Stability. ACS Sustainable Chemistry & Engineering. 2023;11:10344-51.
[102] Santi S, Soccio M, Fredi G, Lotti N, Dorigato A. Uncharted development of electrospun mats based
on bioderived poly(butylene 2,5-furanoate) and poly(pentamethylene 2,5-furanoate). Polymer.
2023;279:126021.
[103] Siracusa C, Quartinello F, Soccio M, Manfroni M, Lotti N, Dorigato A, et al. On the Selective
Enzymatic Recycling of Poly(pentamethylene 2,5-furanoate)/Poly(lactic acid) Blends and Multiblock
Copolymers. ACS Sustainable Chemistry & Engineering. 2023;11:9751-60.
[104] Trapasso G, Chícharo B, Gherardi T, Redolfi-Bristol D, Aricò F. Iron(III) Sulfate-Mediated Synthesis
of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid. Catalysts. 2023;13:1114.
[105] Walkowiak K, Paszkiewicz S, Irska I, Kochmanska A, Dydek K, Boczkowska A, et al. Furan-Based
Bionanocomposites Reinforced with a Hybrid System of Carbon Nanofillers. Advanced Engineering
Materials. 2023;25:2300046.
[106] Xanthopoulou E, Terzopoulou Z, Zamboulis A, Koltsakidis S, Tzetzis D, Peponaki K, et al.
Poly(hexylene vanillate): Synthetic Pathway and Remarkable Properties of a Novel Alipharomatic Lignin-
Based Polyester. ACS Sustainable Chemistry & Engineering. 2023;11:1569-80.
[107] Zaidi S, Bougarech A, Abid M, Abid S, Silvestre AJD, Sousa AF. Highly Flexible Poly(1,12-dodecylene
5,5′-isopropylidene-bis(ethyl 2-furoate)): A Promising Biobased Polyester Derived from a Renewable
Cost-Effective Bisfuranic Precursor and a Long-Chain Aliphatic Spacer. Molecules. 2023;28:4124.

2024

[108] Aguiar MIS, Sousa AF, Teixeira G, Tavares APM, Ferreira AM, Coutinho JAP. Enhancing plastic
waste recycling: Evaluating the impact of additives on the enzymatic polymer degradation. Catalysis
Today. 2024;429:114492.
[109] Chícharo B, Fadlallah S, Allais F, Aricò F. Furandicarboxylate Polyesters: A Comprehensive ADMET
Study of a Novel Class of Furan-Based α,ω-Diene Monomers. ChemSusChem. 2024;17:e202301311.
[110] Gericke M, Amaral AJR, Budtova T, De Wever P, Groth T, Heinze T, et al. The European
Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for
exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydrate Polymers.
2024;326:121633.
[111] Ioannidis RO, Xanthopoulou E, Terzopoulou Z, Zamboulis A, Bikiaris DN, Papageorgiou GZ.
Synthesis and thermal investigation of poly(propylene terephthalate-co-2,5-furan dicarboxylate)
copolyesters. Journal of Industrial and Engineering Chemistry. 2024;131:531-44.

[112] Lackner F, Šurina P, Fink J, Kotzbeck P, Kolb D, Stana J, et al. 4-Axis 3D-Printed Tubular Biomaterials
Imitating the Anisotropic Nanofiber Orientation of Porcine Aortae. Advanced Healthcare Materials.
2024;13:2302348.
[113] Shariq M, Rudolf R, Majerič P, Chattopadhyaya S, Kargl R, Friedrich B, et al. Jettability and
printability of customized gold nanoparticles-based ink on flexible substrate through inkjet printing
process. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;682:132837.
[114] Silvianti F, Maniar D, Agostinho B, de Leeuw TC, Pelras T, Dijkstra L, et al. Unraveling The Impact of
Isomerism on Enzymatic Polymerization of Furanic Polyesters. Advanced Sustainable Systems.
2024;n/a:2300542.
[115] van Strien N, Niskanen J, Berghuis A, Pöhler H, Rautiainen S. Production of 2,5-Furandicarboxylic
Acid Methyl Esters from Pectin-Based Aldaric Acid: from Laboratory to Bench Scale. ChemSusChem.
2024;17:e202300732.
[116] Wenger J, Jäger G, Näyhä A, Plakolb S, Krassnitzer PE, Stern T. Exploring potential diffusion
pathways of biorefinery innovations—An agent-based simulation approach for facilitating shared value
creation. Business Strategy and the Environment. 2024;n/a.

fur4sustain-325x105-1-new

Contact us
University Of Aveiro andreiafs@ua.pt