

FUR4Sustain WGs/CG Virtual Meeting | CHRISTMAS MEETING | December 17-18, 2020





Alexandra ZAMBOULIS,<sup>a</sup> Eleftheria XANTHOPOULOU,<sup>b</sup> Evangelia MPALLA,<sup>a</sup> Lazaros PAPADOPOULOS,<sup>a</sup> Zoi TERZOPOULOU,<sup>a</sup> George Z. PAPAGEORGIOU,<sup>b</sup> Dimitrios N. BIKIARIS<sup>a\*</sup>

- [a] Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
- [b] Chemistry Department, University of Ioannina, P.O. Box 1186, GR-45110, Ioannina, Greece

### Background

Most commodity plastics are fossil-based

Issues: \* Progressive depletion of fossil resources

\* Fluctuating oil price

Solution

✓ Biomass valorization for new environment friendly polymers

Lignin

Renewable, non-edible, low-cost by-product of the paper industry

Valorization in the production of novel bio-based monomers

- Vanillin produced from lignin is already commercially available.
- Vanillic acid, an aromatic hydroxy-acid, can be readily produced from vanillin by oxidation.

# Bio-based monomers and corresponding polyesters



# Poly(ethylene vanillate), PEV

structurally similar to

- $\blacksquare$  T<sub>g</sub> 83 °C, T<sub>m</sub> 261 °C (comparable to PET T<sub>g</sub>=80 °C and T<sub>m</sub>=252 °C).
- $ightharpoonup \Delta H_{\rm m}^{\circ}$  166 ± 16 J/g, equilibrium melting temperature ( $T_{\rm m}^{0}$ ) 301.4 °C.
- Slow crystallization attributed to poor nucleation density.
- ► Thermal stability: 1% mass loss at 327 °C, maximum decomposition rate at ~420 °C.
- Thermal degradation mechanism (Py-GC/MS):
  - heterolytic scission characteristic of ester bonds, and
  - extensive C-O and C-C homolytic cleavage attributed to the ether linkage.
- Mechanical properties (nanoindentation): hardness close to PET.

#### Copolymers with ethylene furanoate



- Successful copolymerization demonstrated by NMR, probably block structure.
- ightharpoonup T<sub>g</sub>s around 80 °C.
- Lower thermal stability compared to poly(ethylene furanoate).





#### Conclusions

- Vanillic acid is an interesting bio-based monomer for the synthesis of sustainable thermoplastics.
- Poly(ethylene vanillate) is a promising ether-containing polyester, with thermal properties comparable to PET.
- Poly(propylene vanillate) has exhibited remarkable thermal properties.
- Copolymers with ethylene furanoate are under investigation.

